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Background Subtraction Using Background Sets
With Image- and Color-Space Reduction
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Abstract—Background subtraction is a basic step for a variety
of multimedia applications such as live video, traffic monitoring,
communication system, interactive learning space, etc. Many
approaches have been proposed for this problem, but the need for
lower cost approaches still exists. In this paper, a relatively low-cost
background-subtraction method is proposed, using background
sets with image- and color-space reduction. The background sets
are used to detect objects from dynamic backgrounds, which
contain waves, trees, and fountains. The image space is reduced
to deal with jittered and unsteady frames, e.g., the input from
handheld mobile devices. The color space is reduced to compensate
for color noise, e.g., the scattered RGB values of a digital camera.
To reduce the cost, a combination of color-space reduction and
hash-table look-up operations are used. The results compared with
other methods show the feasibility of our method; moreover, it can
be useful in mobile or embedded environments.

Index Terms—Background subtraction, change detection,
foreground segmentation, video signal processing.

I. INTRODUCTION

A. Background Subtraction

BACKGROUND subtraction, or foreground detection us-
ing background modeling, is a basic step for various

multimedia applications such as live video [1], traffic mon-
itoring [2], communication system [3], interactive learning
space [4], etc. Many approaches have been proposed for back-
ground subtraction in more than three decades, but the need
for lower-cost approaches still exists. Several works have been
provided well-structured surveys [5]–[8]. The approaches are
categorized into basic, statistical, fuzzy, neural network, wavelet
background modeling, background clustering, and background
estimation [5].

In basic modeling, a simple average [9], median [10], lu-
minance [11], or histogram analysis over time [12] is used.
These values are used to determine whether a pixel is fore-
ground or background. Also an interactive image segmentation
is presented [13].
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In statistical modeling, single Gaussian [14], Mixture of
Gaussians [15], Kernel Density Estimation [16], Principal Com-
ponent Analysis (PCA) [17], (2D)2PCA [18], PCA-based RBF
network [2], Independent Component Analysis [19], or Support
Vector Machine [20] techniques are used to classify the pix-
els. Many approaches have been developed from the Mixture of
Gaussians [6], in particular.

Fuzzy-based modeling techniques include using a fuzzy Run-
ning Average [21] or a Fuzzy Mixture of Gaussians [22]. In
neural-network modeling, backgrounds are represented using
General Regression Neural Networks [23] or Self-Organizing
Neural Networks [24]. In background clustering, pixels in the
frame are clustered, and new pixels are classified as foreground
or background using these clusters. Pixels are clustered using the
K-means algorithm [25] or Codebook [26]. In background esti-
mation, backgrounds are estimated using filters like the Kalman
Filter [27].

Recently there have been challenges for specific background
problems. Several approaches were proposed for solving the dy-
namic background problem [34]–[36]. To deal with variable bit
rates over real world networks with limited bandwidth, several
method was presented [37], [38]. There are background meth-
ods proposed to cope with turbulence [39], sudden luminance
changes [40], and bootstrapping [41]. Other method improves
efficiency by eliminating the examination of non ROI region
[42]. There are recent improvements in method using matrix
decomposition like robust PCA [43], [44] and Manhattan non-
negative matrix factorization [45]. As the higher order general-
ization of matrix decomposition, tensor based approaches have
been proposed recently [46]–[50].

To solve the problem of the dynamic background, block-based
codebook methods were proposed [34], [35]. A hierarchical
codebook was employed [34] but the suitable size of block is not
fixed for each video. To solve this, a multilayer codebook-based
background model is proposed [35] with three adaptive block-
based layers for coarse detection and a pixel-layer to classify
pixels as foreground, shadows, and highlights. Another motion
detection approach for the dynamic background based on radial
basis function artificial neural networks is developed [36]. It
generates a flexible probabilistic background model through
an unsupervised learning then detects moving objects by only
processing blocks that are highly likely to contain them. Our
method also challenges the dynamic background but our goal is
fast and lightweight algorithm for mobile devices or embedded
system environments with reasonable results.

To overcome the limitations presented in video streams
of variable bit rates over real world networks with limited
bandwidth, an automated motion detection for traffic surveil-
lance systems was proposed [37], [38]. It employs a Fisher’s
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linear discriminant-based radial basis function network [37]. Or
a motion detection approach that is based on the cerebellar-
model-articulation-controller through artificial neural networks
is presented [38]. The results they showed are superior to oth-
ers in video streams of both low and high bit rate of traffic
surveillance systems.

For the turbulence videos, a simultaneous turbulence mitiga-
tion and moving object detection approach was proposed [39].
It produces an object confidence map using a turbulence model
which utilizes both the intensity and the motion cues. Then it
decomposes the sequence into the background, the turbulence,
and the moving objects by solving three-term rank optimization.

When sudden luminance changes occur, background model
re-initialization technique for motion detection was developed
[40]. It contains a morphology-based temporal difference com-
putation and a temporal difference-based entropy estimation
step to detect sudden luminance changes.

In background subtraction, a bootstrapping process is nec-
essary when there are no initial video data without mov-
ing objects. A hybrid method with detection of background
and foreground candidates [41] are proposed to solve this. It
quickly initializes the background model using background can-
didate detection method and eliminates unnecessary regions
containing only background pixels using foreground candidate
detection method.

A motion detection for the automatic video surveillance sys-
tem was proposed [42]. It produces high-quality background
model first, then eliminates the unnecessary examination of
non ROI region. During background subtraction it performs
rapid matching followed by accurate matching to produce op-
timum background pixels. The background model contains
neither noise pixels nor artificial ghost trails.

In robust PCA approaches [43], [44], a large data matrix is
decomposed into the low-rank matrix and the sparse matrix.
Background subtraction is a natural application for this model.
Video frames are stacked as columns of the source matrix, then
the low-rank component corresponds to the background and the
sparse component captures the foreground objects. A weighted
combination of the nuclear norm and of the l1 norm is mini-
mized to the decomposition of a low-rank matrix and an overall
sparse matrix in Principal Component Pursuit [43]. This is one
of robust PCA approaches and can recover the principal com-
ponents of a data matrix even though a positive fraction of its
entries are arbitrarily corrupted. Thus, objects can be detected in
a cluttered background. But this cannot handle entire columns
where every entry is corrupted. Outlier Pursuit recovers the
optimal low-dimensional subspace and identifies the corrupted
points (outliers) exactly [44]. It also uses convex optimization
for recovering low-dimensional structure.

Another matrix decomposition framework applied to back-
ground subtraction is Manhattan non-negative matrix factoriza-
tion (MahNMF) [45]. Non-negative matrix factorization (NMF)
approximates a non-negative data matrix by the product of
two non-negative low-rank factor matrices. MahNMF robustly
estimates the low rank part and the sparse part of a non-
negative matrix. It minimizes the Manhattan distance between
a data matrix and its low-rank approximation for modeling the

heavy-tailed Laplacian noise. It is robust to outliers including
both occlusions and several types of noises.

Low-rank tensor recovery or decomposition is the higher or-
der generalization of low-rank matrix decomposition like robust
PCA. This decompose data into the low-rank and the sparse ten-
sor. This is especially suitable for analyzing multi-linear data
with gross corruptions, outliers and missing values [50].

Tensor based approaches need a priori tensor rank estimates
and a low rank approximation computation of tensor. A frame-
work for finding low rank approximation of a given tensor was
proposed [46] and it used the adaptive Lasso with coefficient
weights for sparse computation in tensor rank detection. The
alternating direction method of multipliers is employed for min-
imization problem of low-rank tensor recovery [50]. Previous
tensor based methods were sensitive to outliers and needed huge
memory usage and computational issues because of the batch
optimization methods. To tackle this, a stochastic optimization
on tensor for robust low-rank and sparse tensor recovery was
proposed [47]. In tensor based method, the memory consump-
tion is increased when data size is very large. To solve this, an
incremental tensor subspace learning was proposed [48] and it
uses only a small part of the entire data and updates the low-
rank model incrementally. When an observed data is formed by
the superposition of the two tensors, a truncated and smoothed
Schatten-p function based method is effective [49]. Authors de-
rived this function using the augmented Lagrangian multiplier
optimization algorithm.

These approaches are appropriate in different cases. However,
for mobile-device or embedded-system conditions, the required
processing cost is often too high to be feasible. Basic modeling
methods have a low-enough time complexity but the results are
not satisfactory. Other methods have acceptable performance,
but the time costs are higher. Our approach began with ba-
sic background-modeling methods for low complexity, but has
acceptable performance in a mobile environment.

B. Related Works

There are previous methods developed for mobile-device or
embedded systems. They are estimation or tracking based ap-
proaches for moving camera [51], [53], [57], [59], region based
approaches for embedded camera [52], [54], [55], [58] and en-
ergy saving analysis of conventional methods [56].

Estimation or tracking based approaches produce superior
results for moving camera but they have more sophisticated
algorithms than other background subtraction methods. Ours
cannot deal with freely moving camera input but can applied as
basic steps for application for this input.

In online moving camera background subtraction [51], pixel-
based models for foreground and background regions are
learned and long term trajectories with a Bayesian filtering
framework are used to estimate motion and appearance models
of the scene. This method is applied to freely moving camera
input but it is not lightweight for mobile-device. Our algorithm
is straightforward and has less complexity in time.

A real-time moving object detection by nonparametric
modeling is presented [53]. Nonparametric background and
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foreground models are obtained by a combination of chromatic-
ity and gradients. A Bayesian classifier with Priors is applied
to this models and a tracking strategy over previously detected
foreground regions based on a particle filter is used. The title
of this method contains ‘lightweight’ but this term is not quan-
titative. The experiment of this method is implemented under
desktop PC environment and the processing rate is 3–11 frame
per second [53]. The comparison of our method with others
under desktop PC environment is presented in result section.

Another method for freely moving camera is developed [59].
It discriminates image motion induced by camera’s motion and
influenced by moving objects. RANSAC is used to estimate the
background trajectory basis and the inliers are classified as back-
ground and the outliers are foreground. This method is applied
for the video from freely moving cameras but difficult for on-
line applications. Our approach focus on input from camera with
limited motion like jittered, pan-tilt-zoom (PTZ) and dynamic
background like fall, waving lake, whiffling leaves, etc.

Robust background subtraction using approximate matching
of cell-phone videos is proposed [57]. This method use two
videos, one with and the other without foreground objects. As a
result, a video with only the foreground objects shown is gen-
erated. The camera paths are not identical and some amount of
partial path is overlapped. It is efficient matching of foreground
and background videos tracing significantly different camera
trajectories. The difference of this method and ours is that this
is for video from mobile device but ours runs on it.

The idea of region based approaches for embedded system is
that the energy can be saved by allocating less resources for non
ROI. They focus on the energy savings because it is critical for
embedded systems. The quality of results is less important.

A chromatic clustering-based background model is proposed
for embedded system [52]. The pixels belonging to the back-
ground colors are classified as ‘stable’ and others are ‘adapt-
able’. Physically large and stable objects with similarly large
clusters of chromaticity is ‘stable’. A palette-based background
model matching is used for ‘stable’ regions and Multimodal
Mean [58] for ‘adaptable’ regions. Palette colors are chosen by
histogram analysis. Multimodal Mean used a running sum of
observed RGB values, an observation count, and two recency
counts for background model matching. Multimodal Mean is ex-
tended for dealing with the movement of an existing stationary
object in background [58]. This method provides time speedup
and storage savings over MMean and is implemented in embed-
ded vision system. But this is for fixed camera and our method
can be applied in ‘adaptable’ region because of its simplicity.

Other method take advantage of savings in processing time by
sending the microprocessor to idle state at the end of processing
a frame [54]. The sending rate is adaptively changed based on
the amount of activity and speeds of tracked objects. Salient and
non-salient motion based on the history of a pixel’s location is
used for saving memory access [55]. A pixel with difference
more than threshold in the region of salient motion is classified
as foreground. But in the region of non-salient motion, it is
checked by the neighborhood information. This is also focus on
energy savings and implemented on embedded cameras. This
method is also for fixed camera and low-cost system but ours

Fig. 1. Plotting a point in RGB color space over 100 background frames.

can be applied for limited movement camera. This method is not
designed for spatial and color noise and have too many constant
values in algorithm.

Backgroundsubtraction algorithms for Android devices de-
ployed in wireless multimedia sensor networks are evaluated
[56] in the aspect of the energy consumptions. It assume
harsh environments such as earthquakes, so distorted frame and
packet loss are simulated in experiments. The algorithms are
not designed for mobile environment and common methods
of BS algorithms in the literature. We compared our method
with common methods in the literature and they are chosen
by dataset provider [31]. For comparison, changedetection.net
implement and provide the results of them. We applied the
same conditions, processor, and post processing parameters
they applied.

C. Background Set

The idea of background sets comes from the oscillation of
pixels in background images. Each pixel of a background frame
can have various values because of digital camera noise, the
flicker of lights, etc. [62]. If the background contains waves,
trees, fountains, fans, etc., the pixel values are also dynamic.

Background sets contain all the values for each pixel on the
training frames for foreground detection. If a pixel value on
the current frame is an element of the background set for its
position, it can be categorized as background.

The input frames of mobile devices are frequently jittered and
unsteady because they are handheld devices. Our approach deals
with this condition using image-space reduction. A block of the
image space is reduced to one point and the jittered movement
within the block can be tolerated.

As shown in the examples of plotting RGB values of the
same point over 100 still frames in Fig. 1, the pixels in the
background of camera images are scattered. The color spectrum
indicates the number of appearances of each RGB value. Red
has the highest number (8, 9, and 4 times each) and blue has
the lowest (only once). These scattered values are approximated
using color-space reduction cubes.

The color space is reduced for fewer comparisons of the
current points with a background, and the speed of our method
can be improved using hash-table-based look-up operations.
In addition, less memory can be used than with no reduction,
but there is a trade-off between speed and accuracy. Parameter
selection is described in Section III.

There have been cluster and codebook based background sub-
traction methods similar to our approaches. Here is the highlight
of our model against other previous approaches.
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There is a background modeling that represents each pixel
in the frame by a group of clusters [60]. Each cluster consists
of a weight and an average pixel value called the centroid.
It defines a matching cluster as one which has a Manhattan
distance between its centroid and the incoming pixel below a
threshold. The boundary formed using Manhattan distance is an
octahedron.

Other clustering based background subtraction classifies the
pixel intensity based on A Modified Basic Sequential Cluster-
ing (MBSC) [61]. It runs clustering procedure then merging if
two of the formed clusters are very closely located. After that,
the appearance frequency of all clusters are calculated. Using
this frequency, a single or multi-images are chosen as the back-
ground images. This model forms the spherical boundaries.

In codebook approach [26], a codebook consisting of one
or more codewords is built for each pixel. Samples at each
pixel are clustered into the set of codewords. The codewords
consists of a color distortion metric and a brightness bound. The
decision boundary formed using the codeword is a cylinder that
its height defines the intensity boundary and radius does the
color distortion.

In our approach, the decision boundary is the set of cubes.
The decision boundary of Manhattan distance clustering [60]
consists of an octahedron, MBSC [61] does spheres and code-
book [26] does cylinders. Cylindrical boundary considering the
intensity changes are not effective because there are so many
noises under real environment like Fig. 1. All methods includ-
ing ours can deal with multiple backgrounds. Clusters [60], [61],
codebook [26] and our method keep multiple backgrounds for
foreground detection.

Clustering procedures are needed for previous cluster based
approaches [26], [60], [61] but our method do not. Only space
reduction operation—subdivision or bitwise shift—is needed
and hash table operation for boundary decision. The draw-
back is that our method uses more memory than others. Details
about time and space complexity are described in experimental
section.

This paper is organized as follows. The proposed background
model is explained with mathematical expressions and images
in Section II. The basic model is explained, and then extended
using reductions in the image and color spaces. Our implemen-
tation is described and some experimental results are shown
in Section III. Then, we discuss and conclude our approach in
Sections IV and V, respectively.

II. BACKGROUND MODEL

In this section, the background modeling is described using
mathematical notations and abstract images. The basic back-
ground model is defined first, and then the image- and color-
space reductions are applied. The notations of this paper are
show in Table I.

A. Basic Background Model

For a training frame T, a pixel value at [x, y] on the i-th frame
of T is as follows. The number of training frames is N, and the

TABLE I
NOTATIONS

Notation Type Meaning

X, Y Constant number Width, height of image frame
U, V Constant number Width, height of reduced image space
Dx , Dy Constant number Reduction ratio of the X, Y direction of image

space
R, G, B Constant number RGB dimension of color space
R′, G′, B′ Constant number RGB dimension of reduced color space
Dr , Dg , Db Constant number Reduction ratio of the RGB direction of color

space
N Constant number Number of training frame
e Vector Some pixel value
p[x, y] Vector Pixel value at (x,y) on current image frame
Ti [x, y ] Vector Pixel value at (x,y) on i-th training frame
B [x, y ] Set of vector Background set containing all pixel values at

(x,y) in all training frames
B′ [u, v] Set of vector Background set at (u,v) in reduced image

space; containing all pixel vales in the
rectangle of (uDx . . . (u + 1) Dx ) ∗ (vDDy

. . . (v + 1) Dy ) in all training frames
B′′[u, v] Set of vector Background set at (u,v) in reduced image and

color space; same as B′ [u, v] but all elements
are divided by Dr , Dg , Db respectively.

width and height of the frames are X and Y, respectively

Ti [x, y]

⎛
⎝

1 ≤ i ≤ N
1 ≤ x ≤ X
1 ≤ y ≤ Y

⎞
⎠ . (1)

For the background sets B, the background set on [x, y] is
defined in (2). B[x, y] is a background set containing all the
pixel values at [x, y] in all training frames

B [x, y] = UN
i=1 {Ti [x, y]} . (2)

Pixel values, like RGB (vector) or intensity (scalar), can
be elements of the background sets. The pixel values of the
same position on the training frames are collected into one
corresponding background set using the set-union operation.
The image frames and the background-set space are the same
dimension as the basic background model.

Using the basic background model, a background pixel is
detected as follows. The pixel p[x, y] of the current image frame
is background, if there exists a pixel value e that is an element
of B[x, y], and the difference between p[x, y] and e is within a
threshold

∃e ∈ B [x, y]

|p [x, y] − e| < Threshold (3)

The background will be overestimated using the basic back-
ground model, and it cannot deal with jittered and unsteady
input. Further, the pixel values of the vibrating part are
redundantly stored.

B. Image-Space Reduction

An image-space reduction is applied to the basic background
model to compensate for spatial noise. Spatial noise comes
from jittered and unsteady input, e.g., the images from handheld
mobile devices. A dynamic background, with rustling trees or
flowing water, can also cause spatial noise.
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Fig. 2. Image-space reduction.

Image-space reduction can reduce the spatial noise. The pix-
els within the striped block of the training images in Fig. 2 are
mapped into one background set. Each pixel within the block of
the current image is classified using the same background set.
Thus, the spatial noise within the block of the image space can
be tolerated.

The dimension of the image space is reduced from X ∗ Y to
U ∗ V. Let the ratio of the X direction be Dx and the Y direction
be Dy , as follows:

X × Y → U × V

Dx =
X

U
Dy =

Y

V
. (4)

The background sets B′ are defined on the reduced image
space, as follows. B′[u, v] is the background set at [u, v] and
defined in (5)

B′ [u, v] = UN
i=1U(u+1)Dx

j=uDx
U(v+1)Dy

k=vDy
{Ti [j, k]}

×
(

1 ≤ u ≤ U
1 ≤ v ≤ V

)
. (5)

All pixel values in the rectangle of (uDx . . . (u +
1)Dx) ∗ (vDy . . . (v + 1)Dy ) from all training frames are
merged into the background set B′(u, v), as in Fig. 2. The
dimension of the reduced image space (background set space)
is U ∗ V.

A background test using the background sets B′ is similar to
the previous method. A pixel p[x, y] of the current image frame
is in the background if there exists a pixel value e that is an
element of B′[x/Dx, y/Dy ], and the difference between p[x, y]
and e is within a threshold

∃e ∈ B′
[

x

Dx
,

y

Dy

]

|p [x, y] − e| < Threshold. (6)

C. Color-Space Reduction

Color-space reduction is applied to the background sets to
compensate for color noise. It is caused by the digital camera
itself, the flicker of lights, etc. The pixel values of a fixed position
on background image frames are not constant and form a non-
uniform cluster, as in Fig. 1. These clusters are approximated
with piles of striped cubes, as in Fig. 3.

The RGB values within the striped cubes are mapped onto
one value; thus, the noise within this cube can be absorbed.
However, too much reduction may cause aliasing artifacts.

The size of the cubes can be used as a threshold parameter,
and thus can simplify the background test. The larger the cube

Fig. 3. Color-space reduction.

size, the larger the tolerance permitted. A pixel on the current
frame can be classified using only look-up operations in the
reduced-color space. In this paper, RGB values are used as pixel
values, but other values, such as intensity, YUV, and HSV, can
be easily applied.

The color space is mapped from R ∗ G ∗ B to R′ ∗ G′ ∗ B′.
Let the ratio of the R, G, and B directions be Dr , Dg , and Db ,
respectively, as follows:

R × G × B → R′ × G′ × B′

Dr =
R

R′ Dg =
G

G′ Db =
B

B′ . (7)

The definition of the background sets B′′ is modified from (5)
by adding the pixel value part. The background set at [u, v] on
the reduced image space is defined as follows, using Dr , Dg ,
and Db :

B′′ [u, v] =
N⋃

i=1

(u+1)Dx⋃
j=uDx

(v+1)Dy⋃
k=vDy

{
T

′[j,k ]
i

} (
1 ≤ u ≤ U
1 ≤ v ≤ V

)

× Ti [j, k] = (r, g, b)

Ti
′[j, k] =

(
r

Dr
,

g

Dg
,

b

Db

)
. (8)

The pixel’s RGB values are mapped onto the reduced
color space. In this case, RGB values are used and the
dimensions of the color space are changed from R ∗ G ∗ B
to R′ ∗ G′ ∗ B′. The pixel values within the cube of (r′Dr . . .
(r′ + 1)Dr ) ∗ (g′Dg . . . (g′ + 1)Dg ) ∗ (b′Db . . .(b′ + 1)Db)
are mapped onto one value (r′, g′, b′), as in Fig. 3.

A pixel can be classified as foreground or background with
only the existence test, if the background set B′′ is used. The
current pixel p[x, y] is background if there exists a pixel value e
that is an element of B′′[x/Dx, y/Dy ], and e is as below

∃e ∈ B′′
[

x

Dx
,

y

Dy

]

p [x, y] = (rp , gp , bp)

e =
(

rp

Dr
,

gp

Dg
,

bp

Db

)
. (9)

D. Post Processing

Post processing can enhance the results of background sub-
traction [30]. The most beneficial methods are a median filter
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and a combination of the Opening and Closing morphological
operations. The median is used to reduce the noise on an image
or signal in signal processing.

Morphological operation can also clean noise. The Opening
operation removes a blob and the closing operation fills a hole.
A combination of these two operations is used with the small
Opening and large Closing structure elements [30]. In this pa-
per, the morphological operation is used as a post-processing
method.

III. EXPERIMENT

A. Implementation

Our background-subtraction method was implemented using
hash-table-based functions. The functions of a hash-table-based
algorithm are often provided in computer-vision or system li-
braries. The time complexities of the search, insert, and delete
hash-table functions are O(1) in the average case and O(n) in the
worst case [33]. The space complexities are O(n) for both the av-
erage and the worst cases [33]. Our method is low cost because
its algorithm is simple and only hash-table-based functions are
used. Following code is the pseudocode of our method.

We implemented our method on the Microsoft Windows 7
OS for the desktop environment and on the Android OS for
the mobile. The SparseMat functions of OpenCV for Windows
3.0 were used as the hash-table implementation for the desk-
top application. However, we could not use SparseMat for the
mobile application because OpenCV for Android 3.0 does not
provide hash-table functionality. The SparseBooleanArray of
the Android 5.1 API was used instead. The SparseMat allows
three parameters (RGB) as a key, but SparseBooleanArray only
allows one parameter. Thus, a hash-key function with three pa-
rameters is necessary when implemented on a mobile platform.

TABLE II
EXPERIMENTAL ENVIRONMENTS

Desktop Mobile

Software Windows 7 Android 5.1
OpenCV for Windows 3.0 OpenCV for Android 3.0 Android 5.1

API

Hardware 8GB RAM 3GB RAM
Intel CoreT M i7-3770 1.9 GHz Octa Core (1.9 GHz Quad +
CPU (3.4GHz) 1.3 GHz Quad Core) Process (Galaxy

Note4)

Hash Table function SparseMat (OpenCV) SparseBooleanArray (Android API)

Fig. 4. Similar objects appearing in training frames and input frames.

The platforms, libraries, and hardware we used are described in
Table II.

Regarding performance, there was no difference in speed
(frames per second (FPS)) for the Windows application between
only the camera capturing and using background subtraction.
The mobile application ran at 5–6 FPS with no objects (the best
case) and 2–3 FPS with no background (the worst case) for a 320
× 240-pixel camera capture image. Detailed processing times
are described in the results section.

B. Datasets

The CDNET datasets were used for the experiment [31],
[32]. They provided extensive datasets of 11 categories, with
four to six video sequences in each containing indoor, out-
door, night, thermal, turbulence, etc. conditions. The CDNET
datasets provide ground-truth data and evaluation tools on their
homepage.

Let TP be True Positive, FP False Positive, FN False Nega-
tive, and TN True Negative. Then, the following metrics can be
computed using their evaluation tools [31].

1) Recall: TP / (TP + FN)
2) Specificity: TN / (TN + FP)
3) FPR (False Positive Rate): FP / (FP + TN)
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Fig. 5. CDNET dataset result images, F-Measure values, and processing times. First column means category, video title, and frame number. For example,
badWeather is the category, snowfall is the video title, and #2809 is the frame number in the first item of the second row. In Ground Truth, white (grayscale 255)
regions mean motion, black (0) mean static, light gray (170) mean unknown, medium gray (85) mean non-ROI, and dark gray (50) mean shadow [31], [32]. The
numerical values below each results are F-Measure values.

4) FNR (False Negative Rate): FN / (TP + FN)
5) PWC (Percentage of Wrong Classifications): 100 ∗ (FN

+ FP) / (TP + FN + FP + TN)
6) F-Measure: (2 ∗Precision ∗Recall) / (Precision + Recall)
7) Precision: TP / (TP + FP)

In addition, the CDNET homepage provides a table of sub-
mitted background-subtraction methods with their results for the
above metrics [31]. In that table, we can sort the methods with
respect to each metric. Our method’s approximate performance
among recent approaches can be estimated.
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C. Results

The results of our background-set approach, as applied to
the CDNET datasets, are shown in Fig. 5. One video sequence
of each category was selected for comparison with other ap-
proaches: Euclidean Distance [8], KDE - ElGammal [16], KNN
[28], GMM - Stauffer & Grimson [15], and GMM - Zivkovic
[29]. The results of these approaches using the CDNET datasets
were provided on the CDNET homepage [31]. The results of
KNN and GMM - Zivkovic were obtained by the organizing
committee of the CDNET datasets using the authors’ original
code. The results of Euclidean Distance and KDE - ElGam-
mal were obtained by the organizing committee of the CDNET
datasets, using the authors’ own implementation or OpenCV.
The results for GMM - Stauffer & Grimson were uploaded by
the authors to the CDNET homepage.

The results in Fig. 5 show the feasibility of our method. In
terms of quality, the F-Measure values of the given video se-
quences were compared. Our method is superior to the others
in the categories of dynamicBackground, intermittentObjectMo-
tion, and PTZ. For the badWeather and lowFramerate categories,
ours is not strong. Similar results are shown for other categories.

The processing times of all methods were compared under
the same conditions. The programming language is C++ and
results were collected using 720×480 videos on a Core i7 3.4
GHz CPU. The processing time of our approach is similar to
Euclidean Distance [8], which is the best of the others.

D. Parameters

Our method has two explicit and one implicit parameter. The
explicit parameters are the ratio of the image-space .0 directions
are Dr, Dg , and Db , respectively, but Drgb = Dr =Dg = Db ).
The implicit parameter is the number of training frames. In the
experiment with the CDNET datasets, the frames from the first
frame to the test start frame were used as training frames.

To show the results according to the parameter variations,
the video sequences in the dynamicBackground category of the
CDNET datasets were used, because these sequences are similar
to the input under mobile environments. The evaluation results,
according to the variations of parameters Dxy and Drgb , are
shown in Tables IV and V. The cases in the tables were se-
lected to show the variety of the tendencies of the result graphs.
‘Category average’ means the average of all six cases of the
dynamicBackground category.

Which evaluation value is important depends on the applica-
tion, but we focused on the F-Measure value in this experiment
to show the feasibility of our method. The F-Measure value is
the local maximum (gray row) when Drgb is 16 in the Cate-
gory average of Table IV. Then, Drgb is fixed as 16 and Dxy is
changed in Table V. The local maximum of the F-Measure value
(gray row) appears when Dxy is 4; its evaluation values have
been compared to the results of other methods in the CDNET
homepage [31]. Thirty methods were compared in the CD.net12
page and 40 methods in the CD.net14 page. CD.net14 is a super-
set of CD.net12. Our method was ranked among these methods,
and the result is shown in Table III.

TABLE III
COMPARISON WITH METHODS IN THE CDNET HOMEPAGE

Evaluations Specificity Recall Precision F-Measure PWC FNR FPR

Our result 0.9990 0.6881 0.7999 0.7229 0.4676 0.3119 0.0010
(Dx y = 4, Dr g b = 16)
CD.net14 rank (total 32) 9th 30th 13th 15th 12th 30th 9th
CD.net12 rank (total 43) 4th 40th 12th 17th 13th 40th 4th

For the post processing, we chose a 5 × 5 structuring element
for the Opening operation and 7 × 7 for the Closing, based on
the experimental results [11].

IV. DISCUSSION

Our background set based method shows slightly better re-
sults in the videos of the dynamic background and the limited
movement of camera like PTZ. Our method contains the knowl-
edge of all history of pixel value during the training phase. The
other methods produce not so good results in the videos of PTZ
category because they do not consider camera’s movement. For
dynamic background, other methods approximate the movement
of background such as fall, waving lake, whiffling leaves, etc.
But our method memorizes the entire pixel values of dynamic
part of background of training frames. Some pixel values are
considered as outliers in other methods but it may be valid for
background.

Proposed method has limitation to deal with the appearance
of the intermittent objects during training phase. Our method
cannot detect the objects that object with similar color already
appeared in the training frames at same position as in Fig. 4.
The navy-blue cars appeared in the training frames; however,
the results of the scene are not good where similar color cars
appear, as shown in Fig. 4. Our method does not use input
factors, e.g., the object’s size, appearance interval, changes in
background intensity, etc. In addition, our method does not up-
date the background set for speed. In a future study, for the
intermittent objects during training phase, we could count the
number of the pixel values and delete them if the number is less
than a threshold.

In our method, the parameters must be chosen manually.
The graphs in Tables IV and V show no general tendencies
or patterns. The maximum or minimum evaluation values are
not related to explicit fixed factors, like the image size. The
ratio of the image-space reduction (Dxy ) can be affected by the
size of an object or the complexity of the object’s boundaries.
Further, the color-space reduction ratio (Drgb ) can be affected
by the sharpness of the contrast between a background and an
object. In future work, our method will be developed to adjust
the parameters without loss of high performance.

No update policy of background for performance cause weak-
ness to gradual changes of background. It is trade-off between
the quality of result and the performance of algorithm. Be-
cause we emphasize the performance that our method can
applied to mobile device or embedded system, we do not
contain background updating mechanism. But we have a fu-
ture plan to improve our method with background updating
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TABLE IV
RESULTS FOR THE DRGB VARIATIONS (DynamicBackground CATEGORY, DXY = 4)

TABLE V
RESULTS FOR THE DXY VARIATIONS (DynamicBackground CATEGORY, DRGB = 16)

algorithm. For the gradual changes of background, we could
consider the neighbor’s values of the pixel values of back-
ground in future work. If new pixel value is the neighbor’s val-
ues with 6 or 26-connectivity, it could be added to background
set.

In our approach, more memory needed than other methods
when it deals dynamic backgrounds and the video of limited
movement of camera. Without approximation of background,
we use more memory but run faster than other methods. In
future study, we could save memory more than current method
with deletion of deprecated background subset.

V. CONCLUSION

A low-cost background modeling technique was proposed
in this paper. It used background sets defined on reduced im-
age and color spaces. Because the background sets contained
all the values of each pixel on the training frames, dynamic
backgrounds, like waves, trees, fans, etc., could be subtracted.
For the same reason, our method showed better results for the
pan-tilt-zoomed camera input.

The image-space reduction could deal with the jittered
and unsteady input from handheld mobile devices. Be-
cause a block of the image space was reduced to a single
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point, the jittered movement within that block could be
tolerated.

Color noise, like the scattered RGB values of a digital camera,
could be compensated with the color-space reduction. The scat-
tered values were approximated using the color-space reduction
cubes. If the size of the cubes were used as the threshold, the
noise within the cubes would be tolerated.

Our method showed the high-speed results, compared with
the other approaches. Using the color-space reduction, the back-
ground test could be completed using only look-up operations,
instead of comparisons with a threshold. Our method had a low
cost because it was implemented with a simple algorithm and
low-complexity hash-table-based functions.

The proposed method in this paper had a low cost and an
advantage in dynamic backgrounds. The results compared with
other methods showed the feasibility of our method. It can be
useful in mobile or embedded environments.
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